sklearn.metrics.ConfusionMatrixDisplay
- 
class sklearn.metrics.ConfusionMatrixDisplay(confusion_matrix, *, display_labels=None)[source]
- 
Confusion Matrix visualization. It is recommend to use plot_confusion_matrixto create aConfusionMatrixDisplay. All parameters are stored as attributes.Read more in the User Guide. - Parameters
- 
- 
confusion_matrixndarray of shape (n_classes, n_classes)
- 
Confusion matrix. 
- 
display_labelsndarray of shape (n_classes,), default=None
- 
Display labels for plot. If None, display labels are set from 0 to n_classes - 1.
 
- 
- Attributes
- 
- 
im_matplotlib AxesImage
- 
Image representing the confusion matrix. 
- 
text_ndarray of shape (n_classes, n_classes), dtype=matplotlib Text, or None
- 
Array of matplotlib axes. Noneifinclude_valuesis false.
- 
ax_matplotlib Axes
- 
Axes with confusion matrix. 
- 
figure_matplotlib Figure
- 
Figure containing the confusion matrix. 
 
- 
 See also - 
 confusion_matrix
- 
Compute Confusion Matrix to evaluate the accuracy of a classification. 
- 
 plot_confusion_matrix
- 
Plot Confusion Matrix. 
 Examples>>> from sklearn.datasets import make_classification >>> from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay >>> from sklearn.model_selection import train_test_split >>> from sklearn.svm import SVC >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... random_state=0) >>> clf = SVC(random_state=0) >>> clf.fit(X_train, y_train) SVC(random_state=0) >>> predictions = clf.predict(X_test) >>> cm = confusion_matrix(y_test, predictions, labels=clf.classes_) >>> disp = ConfusionMatrixDisplay(confusion_matrix=cm, ... display_labels=clf.classes_) >>> disp.plot() Methodsplot(*[, include_values, cmap, …])Plot visualization. - 
plot(*, include_values=True, cmap='viridis', xticks_rotation='horizontal', values_format=None, ax=None, colorbar=True)[source]
- 
Plot visualization. - Parameters
- 
- 
include_valuesbool, default=True
- 
Includes values in confusion matrix. 
- 
cmapstr or matplotlib Colormap, default=’viridis’
- 
Colormap recognized by matplotlib. 
- 
xticks_rotation{‘vertical’, ‘horizontal’} or float, default=’horizontal’
- 
Rotation of xtick labels. 
- 
values_formatstr, default=None
- 
Format specification for values in confusion matrix. If None, the format specification is ‘d’ or ‘.2g’ whichever is shorter.
- 
axmatplotlib axes, default=None
- 
Axes object to plot on. If None, a new figure and axes is created.
- 
colorbarbool, default=True
- 
Whether or not to add a colorbar to the plot. 
 
- 
- Returns
- 
- 
displayConfusionMatrixDisplay
 
- 
 
 
Examples using sklearn.metrics.ConfusionMatrixDisplay
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.ConfusionMatrixDisplay.html