sklearn.gaussian_process.kernels.DotProduct
- 
class sklearn.gaussian_process.kernels.DotProduct(sigma_0=1.0, sigma_0_bounds=1e-05, 100000.0)[source]
- 
Dot-Product kernel. The DotProduct kernel is non-stationary and can be obtained from linear regression by putting \(N(0, 1)\) priors on the coefficients of \(x_d (d = 1, . . . , D)\) and a prior of \(N(0, \sigma_0^2)\) on the bias. The DotProduct kernel is invariant to a rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter sigma_0 \(\sigma\) which controls the inhomogenity of the kernel. For \(\sigma_0^2 =0\), the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by \[k(x_i, x_j) = \sigma_0 ^ 2 + x_i \cdot x_j\]The DotProduct kernel is commonly combined with exponentiation. See [1], Chapter 4, Section 4.2, for further details regarding the DotProduct kernel. Read more in the User Guide. New in version 0.18. - Parameters
- 
- 
sigma_0float >= 0, default=1.0
- 
Parameter controlling the inhomogenity of the kernel. If sigma_0=0, the kernel is homogenous. 
- 
sigma_0_boundspair of floats >= 0 or “fixed”, default=(1e-5, 1e5)
- 
The lower and upper bound on ‘sigma_0’. If set to “fixed”, ‘sigma_0’ cannot be changed during hyperparameter tuning. 
 
- 
- Attributes
- 
- 
 bounds
- 
Returns the log-transformed bounds on the theta. 
- hyperparameter_sigma_0
- 
 hyperparameters
- 
Returns a list of all hyperparameter specifications. 
- 
 n_dims
- 
Returns the number of non-fixed hyperparameters of the kernel. 
- 
 requires_vector_input
- 
Returns whether the kernel is defined on fixed-length feature vectors or generic objects. 
- 
 theta
- 
Returns the (flattened, log-transformed) non-fixed hyperparameters. 
 
- 
 
 ReferencesExamples>>> from sklearn.datasets import make_friedman2 >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = DotProduct() + WhiteKernel() >>> gpr = GaussianProcessRegressor(kernel=kernel, ... random_state=0).fit(X, y) >>> gpr.score(X, y) 0.3680... >>> gpr.predict(X[:2,:], return_std=True) (array([653.0..., 592.1...]), array([316.6..., 316.6...])) Methods__call__(X[, Y, eval_gradient])Return the kernel k(X, Y) and optionally its gradient. clone_with_theta(theta)Returns a clone of self with given hyperparameters theta. diag(X)Returns the diagonal of the kernel k(X, X). get_params([deep])Get parameters of this kernel. Returns whether the kernel is stationary. set_params(**params)Set the parameters of this kernel. - 
__call__(X, Y=None, eval_gradient=False)[source]
- 
Return the kernel k(X, Y) and optionally its gradient. - Parameters
- 
- 
Xndarray of shape (n_samples_X, n_features)
- 
Left argument of the returned kernel k(X, Y) 
- 
Yndarray of shape (n_samples_Y, n_features), default=None
- 
Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. 
- 
eval_gradientbool, default=False
- 
Determines whether the gradient with respect to the log of the kernel hyperparameter is computed. Only supported when Y is None. 
 
- 
- Returns
- 
- 
Kndarray of shape (n_samples_X, n_samples_Y)
- 
Kernel k(X, Y) 
- 
K_gradientndarray of shape (n_samples_X, n_samples_X, n_dims), optional
- 
The gradient of the kernel k(X, X) with respect to the log of the hyperparameter of the kernel. Only returned when eval_gradientis True.
 
- 
 
 - 
property bounds
- 
Returns the log-transformed bounds on the theta. - Returns
- 
- 
boundsndarray of shape (n_dims, 2)
- 
The log-transformed bounds on the kernel’s hyperparameters theta 
 
- 
 
 - 
clone_with_theta(theta)[source]
- 
Returns a clone of self with given hyperparameters theta. - Parameters
- 
- 
thetandarray of shape (n_dims,)
- 
The hyperparameters 
 
- 
 
 - 
diag(X)[source]
- 
Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. - Parameters
- 
- 
Xndarray of shape (n_samples_X, n_features)
- 
Left argument of the returned kernel k(X, Y). 
 
- 
- Returns
- 
- 
K_diagndarray of shape (n_samples_X,)
- 
Diagonal of kernel k(X, X). 
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters of this kernel. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
property hyperparameters
- 
Returns a list of all hyperparameter specifications. 
 - 
is_stationary()[source]
- 
Returns whether the kernel is stationary. 
 - 
property n_dims
- 
Returns the number of non-fixed hyperparameters of the kernel. 
 - 
property requires_vector_input
- 
Returns whether the kernel is defined on fixed-length feature vectors or generic objects. Defaults to True for backward compatibility. 
 - 
set_params(**params)[source]
- 
Set the parameters of this kernel. The method works on simple kernels as well as on nested kernels. The latter have parameters of the form <component>__<parameter>so that it’s possible to update each component of a nested object.- Returns
- 
- self
 
 
 - 
property theta
- 
Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. - Returns
- 
- 
thetandarray of shape (n_dims,)
- 
The non-fixed, log-transformed hyperparameters of the kernel 
 
- 
 
 
Examples using sklearn.gaussian_process.kernels.DotProduct
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.gaussian_process.kernels.DotProduct.html