sklearn.preprocessing.add_dummy_feature
- 
sklearn.preprocessing.add_dummy_feature(X, value=1.0)[source]
- 
Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Data. 
- 
valuefloat
- 
Value to use for the dummy feature. 
 
- 
- Returns
- 
- 
X{ndarray, sparse matrix} of shape (n_samples, n_features + 1)
- 
Same data with dummy feature added as first column. 
 
- 
 Examples>>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[1., 0., 1.], [1., 1., 0.]])
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.preprocessing.add_dummy_feature.html