sklearn.metrics.accuracy_score
- 
sklearn.metrics.accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None)[source]
- 
Accuracy classification score. In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must exactly match the corresponding set of labels in y_true. Read more in the User Guide. - Parameters
- 
- 
y_true1d array-like, or label indicator array / sparse matrix
- 
Ground truth (correct) labels. 
- 
y_pred1d array-like, or label indicator array / sparse matrix
- 
Predicted labels, as returned by a classifier. 
- 
normalizebool, default=True
- 
If False, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples.
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
 
- 
- Returns
- 
- 
scorefloat
- 
If normalize == True, return the fraction of correctly classified samples (float), else returns the number of correctly classified samples (int).The best performance is 1 with normalize == Trueand the number of samples withnormalize == False.
 
- 
 See also - 
jaccard_score, hamming_loss,zero_one_loss
 NotesIn binary and multiclass classification, this function is equal to the jaccard_scorefunction.Examples>>> from sklearn.metrics import accuracy_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> accuracy_score(y_true, y_pred) 0.5 >>> accuracy_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> import numpy as np >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 
Examples using sklearn.metrics.accuracy_score
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.accuracy_score.html