sklearn.metrics.explained_variance_score
- 
sklearn.metrics.explained_variance_score(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average')[source]
- 
Explained variance regression score function. Best possible score is 1.0, lower values are worse. Read more in the User Guide. - Parameters
- 
- 
y_truearray-like of shape (n_samples,) or (n_samples, n_outputs)
- 
Ground truth (correct) target values. 
- 
y_predarray-like of shape (n_samples,) or (n_samples, n_outputs)
- 
Estimated target values. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
- 
multioutput{‘raw_values’, ‘uniform_average’, ‘variance_weighted’} or array-like of shape (n_outputs,), default=’uniform_average’
- 
Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. - ‘raw_values’ :
- 
Returns a full set of scores in case of multioutput input. 
- ‘uniform_average’ :
- 
Scores of all outputs are averaged with uniform weight. 
- ‘variance_weighted’ :
- 
Scores of all outputs are averaged, weighted by the variances of each individual output. 
 
 
- 
- Returns
- 
- 
scorefloat or ndarray of floats
- 
The explained variance or ndarray if ‘multioutput’ is ‘raw_values’. 
 
- 
 NotesThis is not a symmetric function. Examples>>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') 0.983... 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.explained_variance_score.html