sklearn.multioutput.MultiOutputRegressor
- 
class sklearn.multioutput.MultiOutputRegressor(estimator, *, n_jobs=None)[source]
- 
Multi target regression This strategy consists of fitting one regressor per target. This is a simple strategy for extending regressors that do not natively support multi-target regression. New in version 0.18. - Parameters
- 
- 
estimatorestimator object
- 
n_jobsint or None, optional (default=None)
- 
The number of jobs to run in parallel. fit,predictandpartial_fit(if supported by the passed estimator) will be parallelized for each target.When individual estimators are fast to train or predict, using n_jobs > 1can result in slower performance due to the parallelism overhead.Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all available processes / threads. See Glossary for more details.Changed in version 0.20: n_jobsdefault changed from 1 to None
 
- 
- Attributes
- 
- 
estimators_list of n_output estimators
- 
Estimators used for predictions. 
 
- 
 Examples>>> import numpy as np >>> from sklearn.datasets import load_linnerud >>> from sklearn.multioutput import MultiOutputRegressor >>> from sklearn.linear_model import Ridge >>> X, y = load_linnerud(return_X_y=True) >>> clf = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y) >>> clf.predict(X[[0]]) array([[176..., 35..., 57...]]) Methodsfit(X, y[, sample_weight])Fit the model to data. get_params([deep])Get parameters for this estimator. partial_fit(X, y[, sample_weight])Incrementally fit the model to data. predict(X)Predict multi-output variable using a model score(X, y[, sample_weight])Return the coefficient of determination \(R^2\) of the prediction. set_params(**params)Set the parameters of this estimator. - 
fit(X, y, sample_weight=None, **fit_params)[source]
- 
Fit the model to data. Fit a separate model for each output variable. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Data. 
- 
y{array-like, sparse matrix} of shape (n_samples, n_outputs)
- 
Multi-output targets. An indicator matrix turns on multilabel estimation. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights. 
- 
**fit_paramsdict of string -> object
- 
Parameters passed to the estimator.fitmethod of each step.New in version 0.23. 
 
- 
- Returns
- 
- 
selfobject
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
partial_fit(X, y, sample_weight=None)[source]
- 
Incrementally fit the model to data. Fit a separate model for each output variable. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Data. 
- 
y{array-like, sparse matrix} of shape (n_samples, n_outputs)
- 
Multi-output targets. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights. 
 
- 
- Returns
- 
- 
selfobject
 
- 
 
 - 
predict(X)[source]
- 
- Predict multi-output variable using a model
- 
trained for each target variable. 
 - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Data. 
 
- 
- Returns
- 
- 
y{array-like, sparse matrix} of shape (n_samples, n_outputs)
- 
Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor. 
 
- 
 
 - 
score(X, y, sample_weight=None)[source]
- 
Return the coefficient of determination \(R^2\) of the prediction. The coefficient \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true - y_pred) ** 2).sum()and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), wheren_samples_fittedis the number of samples used in the fitting for the estimator.
- 
yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- 
True values for X.
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
 
- 
- Returns
- 
- 
scorefloat
- 
\(R^2\) of self.predict(X)wrt.y.
 
- 
 NotesThe \(R^2\) score used when calling scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score. This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 
Examples using sklearn.multioutput.MultiOutputRegressor
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.multioutput.MultiOutputRegressor.html