sklearn.utils.sparsefuncs.mean_variance_axis
- 
sklearn.utils.sparsefuncs.mean_variance_axis(X, axis, weights=None, return_sum_weights=False)[source]
- 
Compute mean and variance along an axis on a CSR or CSC matrix. - Parameters
- 
- 
Xsparse matrix of shape (n_samples, n_features)
- 
Input data. It can be of CSR or CSC format. 
- 
axis{0, 1}
- 
Axis along which the axis should be computed. 
- 
weightsndarray of shape (n_samples,) or (n_features,), default=None
- 
if axis is set to 0 shape is (n_samples,) or if axis is set to 1 shape is (n_features,). If it is set to None, then samples are equally weighted. New in version 0.24. 
- 
return_sum_weightsbool, default=False
- 
If True, returns the sum of weights seen for each feature if axis=0or each sample ifaxis=1.New in version 0.24. 
 
- 
- Returns
- 
- 
meansndarray of shape (n_features,), dtype=floating
- 
Feature-wise means. 
- 
variancesndarray of shape (n_features,), dtype=floating
- 
Feature-wise variances. 
- 
sum_weightsndarray of shape (n_features,), dtype=floating
- 
Returned if return_sum_weightsisTrue.
 
- 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.utils.sparsefuncs.mean_variance_axis.html