sklearn.metrics.mean_tweedie_deviance
- 
sklearn.metrics.mean_tweedie_deviance(y_true, y_pred, *, sample_weight=None, power=0)[source]
- 
Mean Tweedie deviance regression loss. Read more in the User Guide. - Parameters
- 
- 
y_truearray-like of shape (n_samples,)
- 
Ground truth (correct) target values. 
- 
y_predarray-like of shape (n_samples,)
- 
Estimated target values. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
- 
powerfloat, default=0
- 
Tweedie power parameter. Either power <= 0 or power >= 1. The higher pthe less weight is given to extreme deviations between true and predicted targets.- power < 0: Extreme stable distribution. Requires: y_pred > 0.
- power = 0 : Normal distribution, output corresponds to mean_squared_error. y_true and y_pred can be any real numbers.
- power = 1 : Poisson distribution. Requires: y_true >= 0 and y_pred > 0.
- 1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0 and y_pred > 0.
- power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0.
- power = 3 : Inverse Gaussian distribution. Requires: y_true > 0 and y_pred > 0.
- otherwise : Positive stable distribution. Requires: y_true > 0 and y_pred > 0.
 
 
- 
- Returns
- 
- 
lossfloat
- 
A non-negative floating point value (the best value is 0.0). 
 
- 
 Examples>>> from sklearn.metrics import mean_tweedie_deviance >>> y_true = [2, 0, 1, 4] >>> y_pred = [0.5, 0.5, 2., 2.] >>> mean_tweedie_deviance(y_true, y_pred, power=1) 1.4260... 
Examples using sklearn.metrics.mean_tweedie_deviance
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.mean_tweedie_deviance.html