sklearn.metrics.plot_det_curve
- 
sklearn.metrics.plot_det_curve(estimator, X, y, *, sample_weight=None, response_method='auto', name=None, ax=None, pos_label=None, **kwargs)[source]
- 
Plot detection error tradeoff (DET) curve. Extra keyword arguments will be passed to matplotlib’s plot.Read more in the User Guide. New in version 0.24. - Parameters
- 
- 
estimatorestimator instance
- 
Fitted classifier or a fitted Pipelinein which the last estimator is a classifier.
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Input values. 
- 
yarray-like of shape (n_samples,)
- 
Target values. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
- 
response_method{‘predict_proba’, ‘decision_function’, ‘auto’} default=’auto’
- 
Specifies whether to use predict_proba or decision_function as the predicted target response. If set to ‘auto’, predict_proba is tried first and if it does not exist decision_function is tried next. 
- 
namestr, default=None
- 
Name of DET curve for labeling. If None, use the name of the estimator.
- 
axmatplotlib axes, default=None
- 
Axes object to plot on. If None, a new figure and axes is created.
- 
pos_labelstr or int, default=None
- 
The label of the positive class. When pos_label=None, ify_trueis in {-1, 1} or {0, 1},pos_labelis set to 1, otherwise an error will be raised.
 
- 
- Returns
- 
- 
displayDetCurveDisplay
- 
Object that stores computed values. 
 
- 
 See also - 
 det_curve
- 
Compute error rates for different probability thresholds. 
- 
 DetCurveDisplay
- 
DET curve visualization. 
- 
 plot_roc_curve
- 
Plot Receiver operating characteristic (ROC) curve. 
 Examples>>> import matplotlib.pyplot as plt >>> from sklearn import datasets, metrics, model_selection, svm >>> X, y = datasets.make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = model_selection.train_test_split( ... X, y, random_state=0) >>> clf = svm.SVC(random_state=0) >>> clf.fit(X_train, y_train) SVC(random_state=0) >>> metrics.plot_det_curve(clf, X_test, y_test) >>> plt.show() 
Examples using sklearn.metrics.plot_det_curve
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.plot_det_curve.html