sklearn.decomposition.FastICA
- 
class sklearn.decomposition.FastICA(n_components=None, *, algorithm='parallel', whiten=True, fun='logcosh', fun_args=None, max_iter=200, tol=0.0001, w_init=None, random_state=None)[source]
- 
FastICA: a fast algorithm for Independent Component Analysis. Read more in the User Guide. - Parameters
- 
- 
n_componentsint, default=None
- 
Number of components to use. If None is passed, all are used. 
- 
algorithm{‘parallel’, ‘deflation’}, default=’parallel’
- 
Apply parallel or deflational algorithm for FastICA. 
- 
whitenbool, default=True
- 
If whiten is false, the data is already considered to be whitened, and no whitening is performed. 
- 
fun{‘logcosh’, ‘exp’, ‘cube’} or callable, default=’logcosh’
- 
The functional form of the G function used in the approximation to neg-entropy. Could be either ‘logcosh’, ‘exp’, or ‘cube’. You can also provide your own function. It should return a tuple containing the value of the function, and of its derivative, in the point. Example: def my_g(x): return x ** 3, (3 * x ** 2).mean(axis=-1)
- 
fun_argsdict, default=None
- 
Arguments to send to the functional form. If empty and if fun=’logcosh’, fun_args will take value {‘alpha’ : 1.0}. 
- 
max_iterint, default=200
- 
Maximum number of iterations during fit. 
- 
tolfloat, default=1e-4
- 
Tolerance on update at each iteration. 
- 
w_initndarray of shape (n_components, n_components), default=None
- 
The mixing matrix to be used to initialize the algorithm. 
- 
random_stateint, RandomState instance or None, default=None
- 
Used to initialize w_initwhen not specified, with a normal distribution. Pass an int, for reproducible results across multiple function calls. See Glossary.
 
- 
- Attributes
- 
- 
components_ndarray of shape (n_components, n_features)
- 
The linear operator to apply to the data to get the independent sources. This is equal to the unmixing matrix when whitenis False, and equal tonp.dot(unmixing_matrix, self.whitening_)whenwhitenis True.
- 
mixing_ndarray of shape (n_features, n_components)
- 
The pseudo-inverse of components_. It is the linear operator that maps independent sources to the data.
- 
mean_ndarray of shape(n_features,)
- 
The mean over features. Only set if self.whitenis True.
- 
n_iter_int
- 
If the algorithm is “deflation”, n_iter is the maximum number of iterations run across all components. Else they are just the number of iterations taken to converge. 
- 
whitening_ndarray of shape (n_components, n_features)
- 
Only set if whiten is ‘True’. This is the pre-whitening matrix that projects data onto the first n_componentsprincipal components.
 
- 
 NotesImplementation based on A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and Applications, Neural Networks, 13(4-5), 2000, pp. 411-430 Examples>>> from sklearn.datasets import load_digits >>> from sklearn.decomposition import FastICA >>> X, _ = load_digits(return_X_y=True) >>> transformer = FastICA(n_components=7, ... random_state=0) >>> X_transformed = transformer.fit_transform(X) >>> X_transformed.shape (1797, 7) Methodsfit(X[, y])Fit the model to X. fit_transform(X[, y])Fit the model and recover the sources from X. get_params([deep])Get parameters for this estimator. inverse_transform(X[, copy])Transform the sources back to the mixed data (apply mixing matrix). set_params(**params)Set the parameters of this estimator. transform(X[, copy])Recover the sources from X (apply the unmixing matrix). - 
fit(X, y=None)[source]
- 
Fit the model to X. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Training data, where n_samples is the number of samples and n_features is the number of features. 
- 
yIgnored
 
- 
- Returns
- 
- self
 
 
 - 
fit_transform(X, y=None)[source]
- 
Fit the model and recover the sources from X. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Training data, where n_samples is the number of samples and n_features is the number of features. 
- 
yIgnored
 
- 
- Returns
- 
- 
X_newndarray of shape (n_samples, n_components)
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
inverse_transform(X, copy=True)[source]
- 
Transform the sources back to the mixed data (apply mixing matrix). - Parameters
- 
- 
Xarray-like of shape (n_samples, n_components)
- 
Sources, where n_samples is the number of samples and n_components is the number of components. 
- 
copybool, default=True
- 
If False, data passed to fit are overwritten. Defaults to True. 
 
- 
- Returns
- 
- 
X_newndarray of shape (n_samples, n_features)
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 - 
transform(X, copy=True)[source]
- 
Recover the sources from X (apply the unmixing matrix). - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
- 
Data to transform, where n_samples is the number of samples and n_features is the number of features. 
- 
copybool, default=True
- 
If False, data passed to fit can be overwritten. Defaults to True. 
 
- 
- Returns
- 
- 
X_newndarray of shape (n_samples, n_components)
 
- 
 
 
Examples using sklearn.decomposition.FastICA
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.decomposition.FastICA.html