sklearn.model_selection.check_cv
- 
sklearn.model_selection.check_cv(cv=5, y=None, *, classifier=False)[source]
- 
Input checker utility for building a cross-validator - Parameters
- 
- 
cvint, cross-validation generator or an iterable, default=None
- 
Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross validation, - integer, to specify the number of folds. - CV splitter, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if classifier is True and yis either binary or multiclass,StratifiedKFoldis used. In all other cases,KFoldis used.Refer User Guide for the various cross-validation strategies that can be used here. Changed in version 0.22: cvdefault value changed from 3-fold to 5-fold.
- 
yarray-like, default=None
- 
The target variable for supervised learning problems. 
- 
classifierbool, default=False
- 
Whether the task is a classification task, in which case stratified KFold will be used. 
 
- 
- Returns
- 
- 
checked_cva cross-validator instance.
- 
The return value is a cross-validator which generates the train/test splits via the splitmethod.
 
- 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.model_selection.check_cv.html