sklearn.metrics.plot_precision_recall_curve
- 
sklearn.metrics.plot_precision_recall_curve(estimator, X, y, *, sample_weight=None, response_method='auto', name=None, ax=None, pos_label=None, **kwargs)[source]
- 
Plot Precision Recall Curve for binary classifiers. Extra keyword arguments will be passed to matplotlib’s plot.Read more in the User Guide. - Parameters
- 
- 
estimatorestimator instance
- 
Fitted classifier or a fitted Pipelinein which the last estimator is a classifier.
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Input values. 
- 
yarray-like of shape (n_samples,)
- 
Binary target values. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
- 
response_method{‘predict_proba’, ‘decision_function’, ‘auto’}, default=’auto’
- 
Specifies whether to use predict_proba or decision_function as the target response. If set to ‘auto’, predict_proba is tried first and if it does not exist decision_function is tried next. 
- 
namestr, default=None
- 
Name for labeling curve. If None, the name of the estimator is used.
- 
axmatplotlib axes, default=None
- 
Axes object to plot on. If None, a new figure and axes is created.
- 
pos_labelstr or int, default=None
- 
The class considered as the positive class when computing the precision and recall metrics. By default, estimators.classes_[1]is considered as the positive class.New in version 0.24. 
- 
**kwargsdict
- 
Keyword arguments to be passed to matplotlib’s plot.
 
- 
- Returns
- 
- 
displayPrecisionRecallDisplay
- 
Object that stores computed values. 
 
- 
 See also - 
 precision_recall_curve
- 
Compute precision-recall pairs for different probability thresholds. 
- 
 PrecisionRecallDisplay
- 
Precision Recall visualization. 
 
Examples using sklearn.metrics.plot_precision_recall_curve
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.plot_precision_recall_curve.html