sklearn.preprocessing.LabelEncoder
- 
class sklearn.preprocessing.LabelEncoder[source]
- 
Encode target labels with value between 0 and n_classes-1. This transformer should be used to encode target values, i.e. y, and not the inputX.Read more in the User Guide. New in version 0.12. - Attributes
- 
- 
classes_ndarray of shape (n_classes,)
- 
Holds the label for each class. 
 
- 
 See also - 
 OrdinalEncoder
- 
Encode categorical features using an ordinal encoding scheme. 
- 
 OneHotEncoder
- 
Encode categorical features as a one-hot numeric array. 
 ExamplesLabelEncodercan be used to normalize labels.>>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris'] Methodsfit(y)Fit label encoder. Fit label encoder and return encoded labels. get_params([deep])Get parameters for this estimator. Transform labels back to original encoding. set_params(**params)Set the parameters of this estimator. transform(y)Transform labels to normalized encoding. - 
fit(y)[source]
- 
Fit label encoder. - Parameters
- 
- 
yarray-like of shape (n_samples,)
- 
Target values. 
 
- 
- Returns
- 
- 
selfreturns an instance of self.
 
- 
 
 - 
fit_transform(y)[source]
- 
Fit label encoder and return encoded labels. - Parameters
- 
- 
yarray-like of shape (n_samples,)
- 
Target values. 
 
- 
- Returns
- 
- 
yarray-like of shape (n_samples,)
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
inverse_transform(y)[source]
- 
Transform labels back to original encoding. - Parameters
- 
- 
yndarray of shape (n_samples,)
- 
Target values. 
 
- 
- Returns
- 
- 
yndarray of shape (n_samples,)
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 - 
transform(y)[source]
- 
Transform labels to normalized encoding. - Parameters
- 
- 
yarray-like of shape (n_samples,)
- 
Target values. 
 
- 
- Returns
- 
- 
yarray-like of shape (n_samples,)
 
- 
 
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.preprocessing.LabelEncoder.html