sklearn.linear_model.GammaRegressor
- 
class sklearn.linear_model.GammaRegressor(*, alpha=1.0, fit_intercept=True, max_iter=100, tol=0.0001, warm_start=False, verbose=0)[source]
- 
Generalized Linear Model with a Gamma distribution. Read more in the User Guide. New in version 0.23. - Parameters
- 
- 
alphafloat, default=1
- 
Constant that multiplies the penalty term and thus determines the regularization strength. alpha = 0is equivalent to unpenalized GLMs. In this case, the design matrixXmust have full column rank (no collinearities).
- 
fit_interceptbool, default=True
- 
Specifies if a constant (a.k.a. bias or intercept) should be added to the linear predictor (X @ coef + intercept). 
- 
max_iterint, default=100
- 
The maximal number of iterations for the solver. 
- 
tolfloat, default=1e-4
- 
Stopping criterion. For the lbfgs solver, the iteration will stop when max{|g_j|, j = 1, ..., d} <= tolwhereg_jis the j-th component of the gradient (derivative) of the objective function.
- 
warm_startbool, default=False
- 
If set to True, reuse the solution of the previous call tofitas initialization forcoef_andintercept_.
- 
verboseint, default=0
- 
For the lbfgs solver set verbose to any positive number for verbosity. 
 
- 
- Attributes
- 
- 
coef_array of shape (n_features,)
- 
Estimated coefficients for the linear predictor ( X * coef_ + intercept_) in the GLM.
- 
intercept_float
- 
Intercept (a.k.a. bias) added to linear predictor. 
- 
n_iter_int
- 
Actual number of iterations used in the solver. 
 
- 
 Examples>>> from sklearn import linear_model >>> clf = linear_model.GammaRegressor() >>> X = [[1, 2], [2, 3], [3, 4], [4, 3]] >>> y = [19, 26, 33, 30] >>> clf.fit(X, y) GammaRegressor() >>> clf.score(X, y) 0.773... >>> clf.coef_ array([0.072..., 0.066...]) >>> clf.intercept_ 2.896... >>> clf.predict([[1, 0], [2, 8]]) array([19.483..., 35.795...]) Methodsfit(X, y[, sample_weight])Fit a Generalized Linear Model. get_params([deep])Get parameters for this estimator. predict(X)Predict using GLM with feature matrix X. score(X, y[, sample_weight])Compute D^2, the percentage of deviance explained. set_params(**params)Set the parameters of this estimator. - 
fit(X, y, sample_weight=None)[source]
- 
Fit a Generalized Linear Model. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Training data. 
- 
yarray-like of shape (n_samples,)
- 
Target values. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
 
- 
- Returns
- 
- 
selfreturns an instance of self.
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
predict(X)[source]
- 
Predict using GLM with feature matrix X. - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Samples. 
 
- 
- Returns
- 
- 
y_predarray of shape (n_samples,)
- 
Returns predicted values. 
 
- 
 
 - 
score(X, y, sample_weight=None)[source]
- 
Compute D^2, the percentage of deviance explained. D^2 is a generalization of the coefficient of determination R^2. R^2 uses squared error and D^2 deviance. Note that those two are equal for family='normal'.D^2 is defined as \(D^2 = 1-\frac{D(y_{true},y_{pred})}{D_{null}}\), \(D_{null}\) is the null deviance, i.e. the deviance of a model with intercept alone, which corresponds to \(y_{pred} = \bar{y}\). The mean \(\bar{y}\) is averaged by sample_weight. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). - Parameters
- 
- 
X{array-like, sparse matrix} of shape (n_samples, n_features)
- 
Test samples. 
- 
yarray-like of shape (n_samples,)
- 
True values of target. 
- 
sample_weightarray-like of shape (n_samples,), default=None
- 
Sample weights. 
 
- 
- Returns
- 
- 
scorefloat
- 
D^2 of self.predict(X) w.r.t. y. 
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 
Examples using sklearn.linear_model.GammaRegressor
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.linear_model.GammaRegressor.html