sklearn.manifold.LocallyLinearEmbedding
- 
class sklearn.manifold.LocallyLinearEmbedding(*, n_neighbors=5, n_components=2, reg=0.001, eigen_solver='auto', tol=1e-06, max_iter=100, method='standard', hessian_tol=0.0001, modified_tol=1e-12, neighbors_algorithm='auto', random_state=None, n_jobs=None)[source]
- 
Locally Linear Embedding Read more in the User Guide. - Parameters
- 
- 
n_neighborsint, default=5
- 
number of neighbors to consider for each point. 
- 
n_componentsint, default=2
- 
number of coordinates for the manifold 
- 
regfloat, default=1e-3
- 
regularization constant, multiplies the trace of the local covariance matrix of the distances. 
- 
eigen_solver{‘auto’, ‘arpack’, ‘dense’}, default=’auto’
- 
auto : algorithm will attempt to choose the best method for input data - 
arpackuse arnoldi iteration in shift-invert mode.
- 
For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. 
- 
denseuse standard dense matrix operations for the eigenvalue
- 
decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. 
 
- 
- 
tolfloat, default=1e-6
- 
Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’. 
- 
max_iterint, default=100
- 
maximum number of iterations for the arpack solver. Not used if eigen_solver==’dense’. 
- 
method{‘standard’, ‘hessian’, ‘modified’, ‘ltsa’}, default=’standard’
- 
- 
standarduse the standard locally linear embedding algorithm. see
- 
reference [1] 
- 
hessianuse the Hessian eigenmap method. This method requires
- 
n_neighbors > n_components * (1 + (n_components + 1) / 2see reference [2]
- 
modifieduse the modified locally linear embedding algorithm.
- 
see reference [3] 
- 
ltsause local tangent space alignment algorithm
- 
see reference [4] 
 
- 
- 
hessian_tolfloat, default=1e-4
- 
Tolerance for Hessian eigenmapping method. Only used if method == 'hessian'
- 
modified_tolfloat, default=1e-12
- 
Tolerance for modified LLE method. Only used if method == 'modified'
- 
neighbors_algorithm{‘auto’, ‘brute’, ‘kd_tree’, ‘ball_tree’}, default=’auto’
- 
algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance 
- 
random_stateint, RandomState instance, default=None
- 
Determines the random number generator when eigen_solver== ‘arpack’. Pass an int for reproducible results across multiple function calls. See :term:Glossary <random_state>.
- 
n_jobsint or None, default=None
- 
The number of parallel jobs to run. Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors. See Glossary for more details.
 
- 
- Attributes
- 
- 
embedding_array-like, shape [n_samples, n_components]
- 
Stores the embedding vectors 
- 
reconstruction_error_float
- 
Reconstruction error associated with embedding_
- 
nbrs_NearestNeighbors object
- 
Stores nearest neighbors instance, including BallTree or KDtree if applicable. 
 
- 
 References- 
1
- 
Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000). 
- 
2
- 
Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003). 
- 
3
- 
Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 
- 
4
- 
Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004) 
 Examples>>> from sklearn.datasets import load_digits >>> from sklearn.manifold import LocallyLinearEmbedding >>> X, _ = load_digits(return_X_y=True) >>> X.shape (1797, 64) >>> embedding = LocallyLinearEmbedding(n_components=2) >>> X_transformed = embedding.fit_transform(X[:100]) >>> X_transformed.shape (100, 2) Methodsfit(X[, y])Compute the embedding vectors for data X fit_transform(X[, y])Compute the embedding vectors for data X and transform X. get_params([deep])Get parameters for this estimator. set_params(**params)Set the parameters of this estimator. transform(X)Transform new points into embedding space. - 
fit(X, y=None)[source]
- 
Compute the embedding vectors for data X - Parameters
- 
- 
Xarray-like of shape [n_samples, n_features]
- 
training set. 
- 
yIgnored
 
- 
- Returns
- 
- 
selfreturns an instance of self.
 
- 
 
 - 
fit_transform(X, y=None)[source]
- 
Compute the embedding vectors for data X and transform X. - Parameters
- 
- 
Xarray-like of shape [n_samples, n_features]
- 
training set. 
- 
yIgnored
 
- 
- Returns
- 
- 
X_newarray-like, shape (n_samples, n_components)
 
- 
 
 - 
get_params(deep=True)[source]
- 
Get parameters for this estimator. - Parameters
- 
- 
deepbool, default=True
- 
If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- 
- Returns
- 
- 
paramsdict
- 
Parameter names mapped to their values. 
 
- 
 
 - 
set_params(**params)[source]
- 
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- 
- 
**paramsdict
- 
Estimator parameters. 
 
- 
- Returns
- 
- 
selfestimator instance
- 
Estimator instance. 
 
- 
 
 - 
transform(X)[source]
- 
Transform new points into embedding space. - Parameters
- 
- 
Xarray-like of shape (n_samples, n_features)
 
- 
- Returns
- 
- 
X_newarray, shape = [n_samples, n_components]
 
- 
 NotesBecause of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs) 
 
Examples using sklearn.manifold.LocallyLinearEmbedding
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html