sklearn.linear_model.lars_path
- 
sklearn.linear_model.lars_path(X, y, Xy=None, *, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=2.220446049250313e-16, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False, positive=False)[source]
- 
Compute Least Angle Regression or Lasso path using LARS algorithm [1] The optimization objective for the case method=’lasso’ is: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 in the case of method=’lars’, the objective function is only known in the form of an implicit equation (see discussion in [1]) Read more in the User Guide. - Parameters
- 
- 
XNone or array-like of shape (n_samples, n_features)
- 
Input data. Note that if X is None then the Gram matrix must be specified, i.e., cannot be None or False. 
- 
yNone or array-like of shape (n_samples,)
- 
Input targets. 
- 
Xyarray-like of shape (n_samples,) or (n_samples, n_targets), default=None
- 
Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. 
- 
GramNone, ‘auto’, array-like of shape (n_features, n_features), default=None
- 
Precomputed Gram matrix (X’ * X), if 'auto', the Gram matrix is precomputed from the given X, if there are more samples than features.
- 
max_iterint, default=500
- 
Maximum number of iterations to perform, set to infinity for no limit. 
- 
alpha_minfloat, default=0
- 
Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. 
- 
method{‘lar’, ‘lasso’}, default=’lar’
- 
Specifies the returned model. Select 'lar'for Least Angle Regression,'lasso'for the Lasso.
- 
copy_Xbool, default=True
- 
If False,Xis overwritten.
- 
epsfloat, default=np.finfo(float).eps
- 
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the tolparameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization.
- 
copy_Grambool, default=True
- 
If False,Gramis overwritten.
- 
verboseint, default=0
- 
Controls output verbosity. 
- 
return_pathbool, default=True
- 
If return_path==Truereturns the entire path, else returns only the last point of the path.
- 
return_n_iterbool, default=False
- 
Whether to return the number of iterations. 
- 
positivebool, default=False
- 
Restrict coefficients to be >= 0. This option is only allowed with method ‘lasso’. Note that the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value ( alphas_[alphas_ > 0.].min()when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent lasso_path function.
 
- 
- Returns
- 
- 
alphasarray-like of shape (n_alphas + 1,)
- 
Maximum of covariances (in absolute value) at each iteration. n_alphasis eithermax_iter,n_featuresor the number of nodes in the path withalpha >= alpha_min, whichever is smaller.
- 
activearray-like of shape (n_alphas,)
- 
Indices of active variables at the end of the path. 
- 
coefsarray-like of shape (n_features, n_alphas + 1)
- 
Coefficients along the path 
- 
n_iterint
- 
Number of iterations run. Returned only if return_n_iter is set to True. 
 
- 
 See also References- 
1
- 
“Least Angle Regression”, Efron et al. http://statweb.stanford.edu/~tibs/ftp/lars.pdf 
- 
2
- 
3
 
Examples using sklearn.linear_model.lars_path
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.linear_model.lars_path.html