sklearn.preprocessing.label_binarize
- 
sklearn.preprocessing.label_binarize(y, *, classes, neg_label=0, pos_label=1, sparse_output=False)[source]
- 
Binarize labels in a one-vs-all fashion. Several regression and binary classification algorithms are available in scikit-learn. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. This function makes it possible to compute this transformation for a fixed set of class labels known ahead of time. - Parameters
- 
- 
yarray-like
- 
Sequence of integer labels or multilabel data to encode. 
- 
classesarray-like of shape (n_classes,)
- 
Uniquely holds the label for each class. 
- 
neg_labelint, default=0
- 
Value with which negative labels must be encoded. 
- 
pos_labelint, default=1
- 
Value with which positive labels must be encoded. 
- 
sparse_outputbool, default=False,
- 
Set to true if output binary array is desired in CSR sparse format. 
 
- 
- Returns
- 
- 
Y{ndarray, sparse matrix} of shape (n_samples, n_classes)
- 
Shape will be (n_samples, 1) for binary problems. Sparse matrix will be of CSR format. 
 
- 
 See also - 
 LabelBinarizer
- 
Class used to wrap the functionality of label_binarize and allow for fitting to classes independently of the transform operation. 
 Examples>>> from sklearn.preprocessing import label_binarize >>> label_binarize([1, 6], classes=[1, 2, 4, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]])The class ordering is preserved: >>> label_binarize([1, 6], classes=[1, 6, 4, 2]) array([[1, 0, 0, 0], [0, 1, 0, 0]])Binary targets transform to a column vector >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes']) array([[1], [0], [0], [1]])
Examples using sklearn.preprocessing.label_binarize
 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.preprocessing.label_binarize.html